2023-01-01 08:16:44
强烈建议先阅读:一文弄懂 Diffusion Model
1. 论文信息标题:Multi-Concept Customization of Text-to-Image Diffusion
(相关资料图)
作者:Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, Jun-Yan Zhu.
原文链接:https://arxiv.org/pdf/2212.04488.pdf
代码链接:https://www.cs.cmu.edu/~custom-diffusion/
2. 引言最近通过文本生成图像的深度学习相关技术取得了非常大的进展,2021已经成为了图像生成的一个新的milestone,诸如DALL-E和Stable diffusion这种模型都取得了长足的进步,甚至达到了“出圈”的效果。通过简单文本prompts,用户能够生成前所未有的质量的图像。这样的模型可以生成各种各样的对象、风格和场景,并把它们进行组合排序,这让现有的图像生成模型看上去是无所不能的。
但是,尽管这些模型具有多样性和一些泛化能力,用户经常希望从他们自己的生活中合成特定的概念。例如,亲人、朋友、宠物或个人物品和地点,这些都是非常有意义的concept,也和个人对于生成图像的信息有对齐。由于这些概念天生就是个人的,因此在大规模的模型训练过程中很难出现。事后通过详细的文字,来描述这种概念是非常不方便的,也无法保留足够多的视觉细节来生成新的personal的concepts。这就需要模型具有一定的“定制”能力。也就是说如果给定少量用户提供的图像,我们能否用新概念(例如宠物狗或者“月亮门”,如图所示)增强现有的文本到图像扩散模型?经过微调的模型应该能够将它们与现有概念进行概括并生成新的变化。这带来了几个比较严峻的挑战:
首先,模型倾向于遗忘现有概念的含义:例如,在添加“moon gate”这一concept的时候,“moon”的含义就会丢失。其次,由于stable diffusion这样的网络往往参数会超级多,所以在小数据上训练模型,容易造成对训练样本进行过拟合,而且采样中变化也有限。此外,论文还关注了一个更具挑战性的问题,即组group fine-tuning,即能够超越单个个体concept的微调,并将多个概念组合在一起。学习多个新的concepts同时也是存在一定的挑战的,比如 concept mixing以及concept omission。在这项工作中,论文提出了一种fine-tuning技术,即文本到图像扩散模型的“定制扩散”。我们的方法在计算和内存方面都很有效。为了克服上述挑战,新方法固定一小部分模型权重,即文本到潜在特征的key值映射在cross-attention layer中。fine-tuning这些足以更新模型的新concepts。为了防止模型丧失原来强大的表征能力,新方法仅仅使用一小组的图像与目标图像类似的真实图像进行训练。我们还在微调期间引入data的augamation,这可以让模型更快的收敛,并获得更好的结果。论文提出的方法实验是构建在Stable Diffusion之上,并对各种数据集进行了实验,其中最少有四幅训练图像。对于添加单个concept,新提出的方法显示出比相似任务的作品和基线更好的文本对齐和视觉相似性。更重要的是,我们的方法可以有效地组成多个新concepts,而直接对不同的concepts进行组合的方法则遇到困难,经常会省略一个。最后,我们的方法只需要存储一小部分参数(模型权重的3%),消耗的GPU memory非常有限,同时也减少了fine-tuning的时间。
3. 方法总结来讲,论文提出的方法,就是仅更新权重的一小部分,即模型的交叉注意力层。此外,由于目标概念的训练样本很少,所以使用一个真实图像的正则化集,以防止过拟合。
对于Single-Concept Fine-tuning,给定一个预训练的text-to-image diffusion model,我们的目标是在模型中加入一个新的concept,只要给定四张图像和相应的文本描述进行训练。fine-tuning后的模型应保留其先验知识,允许根据文本提示使用新概念生成新的图像类型。这可能具有挑战性,因为更新的文本到图像的映射可能很容易过拟合少数可用图像。所以保证泛化性就非常有必要,也比较有挑战。所以就仅仅fine-tuning新的K和V,而对于query,则保持不变,这样就可以增加新概念的同时,保证模型的表征能力不受到太多的影响。优化目标还是diffusion的形式:
概括起来实际上非常简单,就是训练一个k和v的矩阵,来扩充维度,增加模型的表征能力,使其能生成更为丰富的图像内容。
而对于Multiple-Concept Compositional Fine-tuning,为了对多个概念进行微调,我们将每个概念的训练数据集合并,并使用我们的方法将它们联合训练。为了表示目标概念,我们使用不同的修饰符的
由于我们的方法仅更新与文本特征相对应的key和value投影矩阵,因此我们可以将它们合并,以允许使用多个微调概念生成。让集合
- 加快虚拟仿真实训基地建设 启动职业学校信息化建设试点很必要
- “双减”后如何在满足学生多样需求方面做“加法”?
- 处于生理活跃期且心理发展不成熟 高校开设公共卫生必修课很必要
- 价格低于相应蔬菜零售价 西安投放约1万吨政府储备蔬菜
- 深受年轻消费群体所青睐 国潮风商品成为年货新选择
知识
- 他把银行卡卖给骗子,“黑吃黑”“截胡”十万元
- “老司机”4S店试驾豪车 结果油门当刹车撞了
- 新开工改造城镇老旧小区5.34万个
- 发动巡河志愿者2万余名 “用心护好每一条河”
- 假客服的套路:伪装成大平台客服,层层布局引人上钩
人物
- 浙江两轮核酸检测结果均为阴性 无新增本土阳性感染者
- 新疆阿克苏地区库车市发生4.1级地震 震源深度18千米
- 抵返哈尔滨人员须持48小时内核酸检测阴性证明
- 浙大紫金港校区已解封 有7337人有序离开该校区
- 2021年广东省第七届风筝锦标赛落幕
- 黑龙江讷河市启动全员核酸检测 目前讷河市全员核酸检测结果均为阴性
- 【同心粤港澳 携手大湾区】南头古城,搭建深港澳三地文化创意活动交流平台
- 重庆入河排污口整治工作推进至全市26个区县
- 四川省第二批政法队伍教育整顿:立案审查调查省级政法机关干警58人
- 长三角区域生态环境部门“云签约”长江大保护倡议书
- 古老长城重焕新生机
- 藏不住了!你同事里有许多“武林高手”……
- 浙江杭州2例无症状感染者系感染德尔塔变异株
- 喜马拉雅的深情和誓言
- 浪漫之城打造山海城一体新地标
- 让老年人更适应数字生活
- 内蒙古通辽市新增1例本土确诊病例、1例无症状感染者
- 徐州无新增确诊病例 核酸检测55515人结果均为阴性
- 甘肃培树“农家巧娘”增技能:返乡创业掌勺又“掌柜”
- 内蒙古通辽市科尔沁区一地调整为中风险地区
- 上海本轮疫情涉及闭环管理的医疗机构全面恢复门急诊
- 青年学生成艾滋病感染高发人群 “社会疫苗”如何打?
- 内蒙古满洲里新增本土确诊病例1例 当地开展第二轮大规模核酸检测
- 江西无新增本土确诊病例 上饶全面恢复正常生产生活秩序
- 中老铁路上会四国语言的列车长:用心维护中老友谊的桥梁
- 海南首次发现有环志的世界极危鸟种勺嘴鹬
- 一场“网络劝生者”和“网络劝死者”的战役
- 内蒙古通辽新增本土确诊和无症状感染者各1例 轨迹公布
- 江西中烟工业有限责任公司原总经理姚庆艳接受审查调查
- 宁夏45例新冠肺炎确诊病例均已治愈出院
- 内蒙古通辽市科尔沁区发现2名初筛阳性人员
- 生活在闹钟里的丈夫:自己迟一秒,渐冻症妻子就会多一分疼
- 辽宁新冠肺炎确诊病例零新增
- 11月28日16-24时,内蒙古新增本土确诊病例1例
- 奥密克戎毒株为何“需要关注”?现有防疫工具还有效吗?
- 黑龙江新增本土无症状感染者1例
- 这辈子一定要去趟这个公园 在这里“有种爱叫放手”
- 那年今日 | 一张漫画涨知识之11月29日
- 寒潮预警!我国中东部迎大范围降温 黑龙江等地降幅可达12℃
- 冷空气继续影响我国中东部 华北黄淮等地有雾和霾天气